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avenue 1, Tbilisi 380028, Georgia
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Abstract. One-to-one correspondence between the decay law of von Neumann–Wigner-type
potentials and the asymptotic behaviour of the wavefunctions representing ‘bound states’ in the
continuum is established.

Many years ago von Neumann and Wigner [1] discovered a class of potentials that gives
isolated quantum mechanical levels embedded in the continuum of positive energy states.
The underlying strategy of these authors was used in [2] to produce additional examples.
The main features of these potentials are the oscillations together with a relatively slow
decrease at the spatial infinity. Several authors have contributed to the solid mathematical
substantiation of this extraordinary phenomenon and most of the results are collected in
the excellent books of Reed and Simon [3]. Recently, interest in this problem was excited
anew due to possible applications in the physics of atoms and molecules. In spite of a large
number of publications ‘there is not as yet a fully systematic approach’, as it was noted in
a recent review [4]. In [4] the isospectral technique was applied to generate this kind of
potentials.

One of the most fundamental conclusions of all previous investigations is that, for the
modulating functions used there, the normalizable (square integrable) wavefunctions have
only a power-like decay at large distances while the potentials vanish in the same limit.
Hence, these wavefunctions can hardly be called bound states in the usual sense, because
in general they do not guarantee finiteness even of the square radius of the state.

Below we present a slightly modified, but in our opinion more convenient method, that
allows one to observe a one-to-one correspondence between the decay law of the potentials
and the wavefunction corresponding to the bound states in continuum. Moreover, we will
demonstrate that there exist potentials which lead to wavefunctions with a decay more rapid
than the power-like decrease.

We will considerS-waves only. The corresponding Schrödinger equation for the radial
function χ has the form

χ ′′(r) + 2m

h̄2
[E − U(r)] χ(r) = 0. (1)

Denoting

2mE

h̄2 = k2 2mU(r)

h̄2 = V (r) (2)
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we find from equation (1) that

V (r) = k2 + χ ′′

χ
. (3)

Following [1, 2] we take

χ(r) = χ0(r)f (r) (4)

whereχ0(r) is a solution of some solvable Schrödinger equation andf (r) is a modulating
function. As a rule, the free or Coulomb solutions are used forχ0 [1, 2, 4] which satisfy
the boundary condition at the origin:χ(0) = 0. As an example let us take the free particle
solution

χ0(r) = 1

k
sin(kr). (5)

After substituting (4) and (5) into equation (3) one obtains [2]

V (r) = f ′′

f
+ 2k

f ′

f
ctg(kr). (6)

We must choose the functionf (r) such as to provide cancellation of the poles of ctg(kr),
i.e. the zeros of sin(kr). Usually this is achieved by takingf (r) to be a differentiable
function of the variable [1, 2]

s(r) = k

∫ r

0
sin2(kr ′) dr ′ = 1

2kr − 1
4 sin(2kr). (7)

Instead of setting the functionf (r), we will set its logarithmic derivative:

C(r) ≡ f ′

f
. (8)

Then, from (6),

V (r) = C2(r) + C ′(r) + 2kctg(kr)C(r) (9)

and the modulating functionf (r) can be constructed by solving equation (8):

f (r) = A exp

{∫ r

0
C(z) dz

}
. (10)

First of all we must take care of the above-mentioned cancellation of the poles. We can
take

C(r) = φ(r) sin2(kr) (11)

whereφ(r) is a smooth but arbitrary function. Then the potential becomes

V (r) = φ2(r) sin4(kr) + φ′(r) sin2(kr) + 2kφ(r) sin(2kr). (12)

Next, to obtain a potential that vanishes at infinity we try

φ(r) = a

rβ
a = constant β > 0. (13)

So the potential takes the form

V (r) = a2 sin4(kr)

r2β
− aβ sin2(kr)

r1+β
+ 2ak sin(2kr)

rβ
(14)

and the corresponding modulating function is

f (r) = A exp

{
a

∫ r

0

sin2(kz)

zβ
dz

}
. (15)
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Evidently, if β > 0 the last term in (14) will dominate asr → ∞. According to
theorem XIII.58 from [3] if the potential vanishes at infinity liker−β with β > 1 there are
no normalizable wavefunctions for positive eigenvalues. Validity of this theorem in our case
can be checked explicitly by studying the behaviour of the wavefunction corresponding to
(15). Therefore only the caseβ 6 1 is of interest. Let us takeβ = 1 − ε with ε > 0 (the
caseε = 0 must be considered separately). We have∫ r

0

sin2(kz)

z1−ε
dz ≈ rε

2ε
r � 1 (16)

and if we take the coefficienta in (15) to be negative, thenf (r) would have quasi-
exponentially decreasing asymptotics leading to square integrable wavefunctions. Moreover,
the modulating functionf (r) tends to a constant asr approaches the origin and does not
destroy the correct boundary behaviour of the wavefunctionχ .

Collecting all the above results we conclude that if the potential has dominating
asymptotics like

V (r) ∼ −2|a|k
rβ

sin(2kr) 0 < β < 1 (17)

then the wavefunctionχ behaves as

χ(r) ∼ sin(kr) exp

{
− |a|r1−β

2(1 − β)

}
r � 1 (18)

and so decreases fast enough to be normalizable.
Let us now consider the limiting caseβ = 1 and define

I = lim
σ→0

∫ r

σ

sin2(kz)

z
dz = 1

2 (ln(kr) − Ci(2kr) + γ + ln 2) (19)

whereγ is the Euler constant and Ci(u) is the integral cosine, which has the following
asymptotics [5]:

Ci(u) ≈ γ + ln(u) − u2

4
+ O

(
u4

)
u � 1

Ci(u) ≈ sin(u) + O
(
u−1

)
u � 1. (20)

Therefore

I −→ 1
2(kr)2 kr � 1

I −→ 1
2 ln(kr) kr � 1. (21)

Making use of (20) and (21) in (19) and then in (15), we see that

f (r) −→ constant kr � 1

f (r) −→ (kr)a/2 kr � 1 (22)

and therefore

χ(r) −→ r−|a|/2 sin(kr) kr � 1. (23)

This unifies correctly all known results derived for ther−1 sin(2kr) asymptotic behaviour
of the potential and agrees with Atkinson’s theorem [3].

As a conclusion we can say that there is a one-to-one correspondence between the
asymptotic behaviour of potentials decreasing with oscillations and that of the wavefunctions
belonging to bound states in the continuum. A minor modification of the point of view (see
equations (8)–(12)) allowed us to obtain generalized von Neumann–Wigner-type potentials
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with a more arbitrary power decrease,β 6= 1. Only β 6 1 gives bound states in the
continuum. Of course the correspondence found above between the asymptotics does not
depend on the method of construction—it is general because its validity depends only on the
asymptotic behaviour of the potential under consideration. The last comment we want to
make is that the purely exponential decrease exp(−|a|r/2) of the wavefunction corresponds
to potentials that do not vanish at infinity, but merely oscillate (the caseβ = 0). The
finiteness of any characteristic dimensions of the bound state (such as square radius or any
higher moments ofr) makes the principal difference between the new solutions (forβ 6= 1)
and the known ones (β = 1), namely the former are localized like ordinary bound states,
while the latter are not.
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